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ABSTRACT: The core Argo array has operated with the design goal of uniform spatial distribution of 38 in latitude and
longitude. Recent studies have acknowledged that spatial and temporal scales of variability in some parts of the ocean are
not resolved by 38 sampling and have recommended increased core Argo density in the equatorial region, boundary cur-
rents, and marginal seas with an integrated vision of other Argo variants. Biogeochemical (BGC) Argo floats currently ob-
serve the ocean from a collection of pilot arrays, but recently funded proposals will transition these pilot arrays to a global
array. The current BGC Argo implementation plan recommends uniform spatial distribution of BGC Argo floats. For the
first time, we estimate the effectiveness of the existing BGC Argo array to resolve the anomaly from the mean using a sub-
set of modeled, full-depth BGC fields. We also study the effectiveness of uniformly distributed BGCArgo arrays with vary-
ing float densities at observing the ocean. Then, using previous Argo trajectories, we estimate the Argo array’s future
distribution and quantify how well it observes the ocean. Finally, using a novel technique for sequentially identifying the
best deployment locations, we suggest the optimal array distribution for BGC Argo floats to minimize objective mapping
uncertainty in a subset of BGC fields and to best constrain BGC temporal variability.
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1. Introduction

Once a distant prospect, research infrastructure funding is
providing a 5-yr opportunity to procure and deploy a global
array of Biogeochemical (BGC) Argo floats. For the first time,
nitrate, oxygen, chlorophyll, and pH will be measured on a
global scale in near–real time and will provide insight into how
BGC variables flux and ventilate the ocean (Majkut et al. 2014;
Landschützer et al. 2016; Bushinsky et al. 2019, 2017).

The core Argo array collects temperature and salinity profiles
throughout most of the open ocean. For over 20 years, core
Argo floats have been deployed at locations to achieve or
exceed uniform spatial coverage of 38 latitude 3 38 longitude
(Roemmich et al. 1999). Recent Argo analysis has recognized
that there exists higher temperature and salinity variability in
specific regions and has called for doubled Argo density in the
tropics, marginal seas, and boundary currents as part of the new
One Argo global design (Roemmich et al. 2019).

One Argo consists of three components: core Argo, Deep
Argo, and BGC Argo. The six BGC sensors specified for the
newly developing BGC Argo component are oxygen, nitrate,
pH (used to constrain the carbonate system), fluorescence
(converted to chlorophyll concentration), backscatter, and
downwelling irradiance. BGC Argo floats in One Argo follow
the same profiling mission as core Argo floats: profiling to
2000 m every 10 days and parking at 1000 m between profiles.
BGC Argo float density has been specified at about one quar-
ter the density of core Argo (Johnson and Claustre 2016), for
a total of about 1000 floats globally. The growing global BGC
Argo array is currently a collection of pilot arrays (Fig. 1).
The largest of these is the Southern Ocean Carbon and Climate
Observations andModeling (SOCCOM) project, which maintains

about 120 BGC floats in the Southern Ocean (Johnson et al.
2017). To bridge the gaps between pilot arrays, a new U.S. project
called GO-BGC is deploying 500 floats globally.

The BGCArgo Science and Implementation Plan (Johnson
and Claustre 2016) guides the design goals of the global BGC
array. After some analysis of the spatial and temporal vari-
ability of BGC fields, Johnson and Claustre (2016) state “It
was, therefore, concluded that initial deployments and opera-
tions should begin with the premise that a relatively uniform
distribution of floats was adequate. Again, this assumption
will be tested as more experience is obtained.” Several studies
have considered BGC Argo array design and give insight on
the uniform distribution assumption made in Johnson and
Claustre (2016). In a seminal BGC Argo study and motivating
study for Johnson and Claustre, Majkut et al. (2014) esti-
mated the uncertainty of CO2 flux estimates in the Southern
Ocean that can be inferred using modeled surface fields and
a hypothetical, uniformly distributed array of Argo floats.
These estimates are surface restricted, do not consider the
cross covariance with other observations, and use stationary
floats for calculating estimates. Johnson and Claustre extended
Majkut et al.’s work, estimating the amount of global CO2 flux
that a hypothetical, uniformly distributed array of 500, 1000,
and 2000 floats could constrain; the study considers other fac-
tors such as chlorophyll variability and decorrelation length
scales and ultimately concludes that 1000 floats is an appropri-
ate BGC Argo density. However, the Johnson and Claustre
analysis is subject to the same limitations of being surface
restricted, not considering the full effects of all BGC sensors,
and using stationary floats. Ford (2021) considered the im-
provements to BGC reanalysis using a full-depth multivariable
model. Ford simulated initial float location and movement
based on an amalgamation of actual float trajectories taken
from 2009 to 2011, modifying their distribution to achieve the
hypothetical design goals. This study found a synergistic effectCorresponding author: Paul Chamberlain, pchamber@ucsd.edu
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of multiple BGC variables in improving assimilated model
BGC performance (likely attributable to the covariance be-
tween BGC variables) and suggested that a BGC Argo array
larger than 1000 floats may be appropriate. Kamenkovich et al.
(2017) advected floats using full-depth HYCOM reanalysis
model velocity fields from 2010 to 2014, with complete BGC
fields, to study the impact of BGC floats on Southern Ocean
observing systems.

These studies can be incrementally improved to a greater
or lesser degree in several ways: (i) include an estimate of
float motion, (ii) quantify the impact of the BGC array at
depths to 2000 m because an observing system designed for
one depth level may not be suitable for all, and (iii) consider
the strong cross covariances that exist between BGC variables
and temperature and salinity because the observation of
one variable can constrain a significant amount of variance in
another (Fig. 2 shows the correlation of temperature BGC
variables with oxygen and chlorophyll}salinity and pH corre-
lations with temperature are not shown but show similar pat-
terns). A float can travel a substantial distance over its
lifespan. If not accounted for, this float motion can produce
biases in the spatial distribution of the array and assimilation
products that use these data (Kamenkovich et al. 2011). The
spatial distribution of variability and the amplitude and
phases of the seasonal cycles are different for each BGC vari-
able (Fig. 3e). Designing an array to capture one variable may

not adequately constrain all of the others. The spatial scales
of BGC covariance are large in the surface ocean: as illus-
trated in Fig. 2, which shows the strong cross covariances of
chlorophyll, temperature, and oxygen at the near surface.
Comparing the gravest eigenmodes of pH covariance for two
different depths (Figs. 4 and 5) reveals that the spatial scales
of BGC covariance are largest in the upper ocean. Many im-
portant and open climate monitoring results, like understand-
ing the change of bulk inventories of oxygen or carbon at
depth, need data of an appropriate spatial density to estimate
processes and inventories at depth accurately.

The observing system design method that we present has
three components. First, we use a transition matrix operator
to predict future float locations. Our Argo-specific transition
matrix, documented in a companion publication (Chamberlain
et al. 2023), is a statistical construction derived from Argo float
trajectory histories that can be used to propagate an array into
the future. Second, we use the coupled, full ocean depth Global
Climate Model CM4 (Held et al. 2019; Adcroft et al. 2019;
Dunne et al. 2020) to generate the statistics used in our observ-
ing system experiments. CM4 calculates temperature and salin-
ity, chlorophyll, pH, and oxygen and does not calculate nitrate,
backscatter, or downwelling irradiance; BGC Argo floats mea-
sure all these variables. Finally, we use BGC cross covariances
calculated from CM4 to account for the additional constraint
that the measurement of a covarying variable has on the amount

FIG. 1. (a) Map of May 2021 snapshot Core and BGC Argo floats and (b) example of random
BGC float locations. Green dots are core Argo floats, and blue dots are BGC floats.
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of BGC variance constrained by the observing system. In our
calculations, we consider the variance constrained by both core
and BGCArgo floats.

In this study, we optimize the float array spatial distribution
to constrain the maximum amount of temporal variance of
modeled variables over several depths. Observations and
assumptions from the resulting float array are best suited to
observe the temporal variability given the criteria of the cal-
culation. By construction, as compared to other float distribu-
tions, the observations from the optimized array can be used
to create large-scale objective maps with the smallest uncer-
tainty in the anomaly from the mean or to constrain data as-
similating models with minimum error covariance.

However, in addition to the homogeneous distributions of
One Argo and the methods explained here, many other criteria
can define an optimal distribution. Observing system design ex-
periments by Kamenkovich et al. (2017) have quantified how
well arrays resolve the seasonal climatology of BGC variables.
While seasonal variability is the dominant mode of variability
we observe, the optimal array we present may not be ideal for
observing this signal. Time of emergence studies (Schlunegger
et al. 2020) have estimated where, when, and how anthropogenic

climate change can be detected. An array of floats could be de-
signed to optimally quantify the anthropogenic signal by increas-
ing the density of observations where the anthropogenic BGC
signal will appear first and be most pronounced; however, our
method is not optimized for detecting this signal. Indeed, be-
cause our methods assume stationary statistics, the proposed ar-
ray may not observe the effects of climate change as rapidly as
an array designed to achieve that goal.

Argo floats sample at 10-day intervals; this is not ideal to
observe high-frequency surface fluxes (Monteiro et al. 2015).
With the advent of efficient two-way satellite communication
to Argo floats via Iridium, one can imagine a network of floats
with regionally or seasonally adaptive temporal sampling to
capture higher-frequency signals in certain BGC provinces
(Reygondeau et al. 2013). Optimal temporal sampling is an
important and open question. This study only addresses
spatial sampling using spatial covariances and assumes that
uncertainty or biases from sampling at too low a frequency
can be represented by increasing the assumed uncertainty
of observations.

Finally, previous studies have documented unique BGC
provinces (Fay and McKinley 2014) and compelling BGC

FIG. 2. Global climate model (CM4) (Held et al. 2019; Adcroft et al. 2019; Dunne et al. 2020)
correlation maps of (a) chlorophyll and oxygen and (b) temperature and oxygen at a depth of
100 m. Colored shading represents strength of correlation. Beige shading represents land. Gray
areas are too shallow to be calculated in simulations.
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phenomena observed from BGC floats (Campbell et al. 2019;
Prend et al. 2019). The proposed deployment methods are not
optimized to observe these regional phenomena that have
large-scale climate impacts. Skilled Argo deployment manag-
ers will always be required to tailor deployments to specific
regional circumstances, but the optimization can provide a
skilled initial estimate.

In summary, we accept the challenge posed by Johnson and
Claustre (2016) to go beyond uniform float distribution and
explore regionally optimized float density. The analysis we
show is just one possibility. It is difficult to predict the future
scientific needs of the Argo program. Therefore, we present a
framework for location selection that, through either models
or community consensus, future biogeochemical researchers

can use to produce optimal float deployments. Bretherton
et al. (1976), who provided the intellectual genesis for much
of this work, said this more succinctly: “no refinement of anal-
ysis will eliminate the need for caution tempered by judge-
ment in the application of these methods to the designs of
major programmes.”We push forward with their ethos.

2. Data

a. Argo float data

The analysis presented here requires Argo float locations
and sensor suites. For this study, Argo float locations were
taken from the May 2021 Argo snapshot (Argo 2021). Argo
floats are intentionally staggered so that not all floats profile

FIG. 3. (a)–(d) Maps of standard deviation of (a) chlorophyll (NASA 2022), (b) oxygen (CM4), (c) CO2 flux
(Landschützer et al. 2016), and (d) salinity (Roemmich and Gilson 2009). Pink dots represent deployed floats with
a sensor equipped to measure (a) chlorophyll, (b) oxygen, (c) pH, and (d) salinity. Colored shading represents the
standard deviation of the variable. Beige shading is land. (e) Monthly mean and anomaly from annual mean normalized
by standard deviation from CM4 for chlorophyll (blue line), oxygen (orange line), pH (green line), and salinity (red line)
at 408S, 208W (denoted by red star on all maps).
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on the same day. We used the most recently reported posi-
tions of the active Argo floats; for this analysis, Argo floats
were considered active if they had reported a position during
the previous 6 months. With the advent of BGC Argo, not all
Argo floats carry the same sensor suite. BGC Argo data are
hosted by the Argo Global Data Acquisition Centers (GDACs),
and the specific sensor makeup of each float was available in the
downloaded GDAC snapshot (Figs. 1 and 3).

b. Biogeochemical model

We used the CM4 coupled ocean–atmosphere model (Held
et al. 2019; Adcroft et al. 2019) to estimate the spatial covari-
ance of global ocean biogeochemistry. The CM4 ocean has a
nominal grid spacing of 1/483 1/48 of latitude and longitude,
and 75 depth levels with 2-m spacing at the surface and 200-m
spacing at depth. CM4 ocean biogeochemistry was calculated
using the Biology Light Iron Nutrient and Gas (BLINGv2)
model (Galbraith et al. 2010; Dunne et al. 2020). The surface
and subsurface biogeochemical model results compare well
with observations; however, BLINGv2 is, by design, unable to
distinguish between the phosphorus and nitrogen nutrient
cycles and is also sensitive to spurious results in the physical
processes of CM4}specifically increased ventilation in the
southern midlatitudes. These calculations used the daily aver-
aged model temperature, salinity, oxygen, pH, and chloro-
phyll from 1850 to 2009. We reduced the computational
burden by subsampling CM4 to a grid spacing of 28 3 28 of
latitude and longitude where depths are greater than 2000 m.
Depth levels of 15, 40, 87.5, 137.5, 225, 350, 550, 750, 950,

1150, 1350, 1625, and 2250 m were used in these calculations.
Chlorophyll was only calculated in the euphotic zone, which
we define as all depths equal to or shallower than 137.5 m,
and the logarithm of chlorophyll was used in these calcula-
tions as is standard practice (Campbell 1995). In total, the spa-
tial domain of each depth level contained 9059 distinct grid
cells of latitude and longitude extending from 768S to 888N.
Over all depth levels and across all variables, the model data
comprised 507304 individual time series.

c. Transition matrix

A transition matrix is an operator that propagates a state
vector forward or backward in time. In this case, the transition
matrix is calculated from previous Argo trajectories to propa-
gate the Argo float array through time. The Argo float array
is represented in these calculations as the Argo state vector,
which exists in the spatial grid defined by the Argo state
space. This spatial grid is a subset of the CM4 28 3 28 latitude
and longitude spatial grid and defines all the locations in
the ocean that an Argo float can occupy. (Some areas, like the
Arctic, do not have many Argo trajectories, and those grid
cells were excluded from the transition matrix.) The transition
matrix is a square matrix with rows and columns equal to the
size of the Argo state space and defines the transitions of a
discrete-time Markov chain. The transition matrix we use has
a 90-day time step. The details of construction of this transi-
tion matrix and choices of this gridcell size and time step can
be found in Chamberlain et al. (2023).

FIG. 4. (a),(b) CM4 maps of eigenvectors of spatial surface pH covariance for (a) the gravest mode and (b) the
seventh eigenmode. Colored shading represents the covariance weighting, and beige shading indicates land.
(c),(d) 72-month subsets of eigenvectors of temporal surface pH covariance for (c) the gravest mode and (d) the
seventh eigenmode. Gravest mode explains 14.0% of the variance, and seventh eigenmode explains 0.8% of the
variance. The first and seventh eigenmodes are shown as an example to explain the scaling argument of section 3c.
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3. Methods

In this study, we fuse two established techniques: (i) a
method that quantifies the amount of variance constrained by
the full sensor suite of a BGC float, based on objective map-
ping (Bretherton et al. 1976) using statistics generated from
the CM4 model, and (ii) the transition matrix approach that
statistically predicts the future location of either an individual
float or an entire float array computed using all previous ob-
served Argo trajectories (Markov 1906; Sévellec et al. 2017;
Chamberlain et al. 2023). Our primary innovation is the com-
bination of these ideas. Many of the scientific questions posed
for BGC Argo arrays involve inventories and fluxes of BGC
variables. Therefore, assessing the effect of a float observation
has less practical utility if float planners do not know where
the float will be, and, conversely, accurately predicting the
observational density has less importance if the impact of
observations to constrain models or budgets is unquantified
(Chamberlain et al. 2018). This procedure is also applicable to
core Argo properties, with of course the same transition ma-
trix, and to other observing systems for which a transition
matrix can be computed, whether from previous observations
or from a model.

In section 3a, we broadly explain the objective mapping
and mapping error methods that are used in this work. The
literature on this topic is well developed, and a summary is
provided for convenience. Objective mapping depends on
knowledge of the means and covariances of the mapped
fields, which require a large amount of data to calculate

accurately. In this case, we use the CM4 model output to esti-
mate the covariances. Oceanic BGC variables have different
variances and spatial and temporal scales of covariance (Fig. 3).
To compare these variables, it is necessary to normalize them to
be nondimensional, with sizes reflecting their importance to the
analysis. The normalization factors can vary with variable type
and location.

In section 3b, we describe the processing methods for the
CM4 model data. We attempt to mitigate spurious covarian-
ces and reduce the computational burden of these methods by
applying a localization to the covariances calculated from the
normalized data. A localization is a filter that restricts the re-
gional extent that a specific grid cell can influence. The locali-
zation used in this work is described in section 3c.

With the processed and localized data, the full covariance
matrix in space is calculated for all points and variables and
used to estimate mapping error for a given Argo float distri-
bution. In section 3d we describe the method to calculate the
variance constrained by a static Argo array. We consider both
existing Argo locations and hypothetical random distribu-
tions. Next, we propagate Argo floats into the future using the
transition matrix, computed from historical Argo trajectories,
and consider the amount of variance constrained by a future
float distribution in section 3e. Finally, in section 3f, we ex-
plain our method for constructing an optimal array and the
testing procedures for quantifying the array’s performance.
The description of our methods uses the notation of Ide et al.
(1997) and the processes and products described in section 3
are represented schematically in Fig. 7.

FIG. 5. (a),(b) CM4 maps of eigenvectors of spatial pH covariance for (a) the gravest mode at 100 m depth and
(b) the gravest mode at 1000 m depth. Colored shading represents the covariance weighting, and beige shading indi-
cates land. (c),(d) 72-month subsets of eigenvectors of temporal pH covariance for (c) the gravest mode at 100 m
depth and (d) the gravest mode at 1000 m depth. Gravest mode at 100 m depth explains 15.5% of the variance, and
gravest mode at 1000 m depth explains 6.9% of the variance.
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a. Objective mapping

Observations y(t)o (length m) of a state vector x(t) are ex-
pressed as

y(t)o 5 Hx(t) 1 e, (1)

where H is the linearized observation operator, e is the noise
process, and the superscript o refers to observations. The state
vector x(t) has dimension n and uncertainty covariance matrix
Pb. The noise process e of length m is assumed to have zero
mean and covariance matrix R. The noise process is com-
posed of instrumental and representation errors.

The state vector x(t) contains the values of all the physical and
BGC property variables from the CM4 model}temperature,
salinity, oxygen, pH, and chlorophyll in the euphotic depths.
The state vector can be restricted to a single depth, or can be a
combination of multiple depths, and is a subset of the model
grid points. This means that the number of elements (n) in the
state vector x(t) is the number of grid points in the domain mul-
tiplied by the number of variables and depths considered: this
can be many times longer than the total number of grid points
in our domain. In general, including additional independent
variables and depth levels provides more information about
the state, but can be computationally expensive as the covari-
ance calculation cost increases quadratically with the number
of elements (n) in the state vector. We use a time series of
model state x around its time mean to estimate the background
error covariance Pb. This is defined as

Pb 5 E[xxT], (2)

where E is the expected value and superscript T is the trans-
form. Matrix Pb contains the cross covariances between bio-
geochemical variables across depths and grid points (Fig. 2).
We assume x to be the true state of global biogeochemistry.
Of course, CM4 has biases and uncertainties (Held et al. 2019;
Dunne et al. 2020), but the exact structure of these errors is
outside the scope of this analysis.

Now we search for a linear estimate of x from the observations
yo. Assume there exists aK, termed the Kalman gain, such that

x̂ 5 Kyo, (3)

where x̂ is the state estimate. The analysis error covariance Pa

is defined as

Pa 5 E[(x 2 x̂)(x 2 x̂)T] (4)

5 E[(x 2 Kyo)(x 2 Kyo)T] (5)

5 KPyyK
T 2 PxyK

T 2 KPxy 1 Pb, (6)

where Pxy is the covariance between modeled locations and
observed locations (model–data covariance), and Pyy is the
covariance between observed locations (data–data covariance).
Matrix Pb [Eq. (2)] is the covariance between all elements of the
state vector (model–model covariance). From Eq. (1) we have
an expression for the observations, the covariance of which can
be written:

Pyy 5 E[yoyoT] 5 E[(Hx 1 e)(Hx 1 e)T] 5 HPbHT 1 R:

(7)

Similarly,

Pxy 5 E[xyoT] 5 E[x(Hx 1 e)T] 5 PbHT: (8)

We complete the square (Saxon 2008) by adding PxyP
21
yy P

T
xy

to both sides of Eq. (6). This gives

Pa 5 (K 2 PxyP
21
yy )Pyy(K 2 PxyP

21
yy )T 1 Pb 2 PxyP

21
yy P

T
xy:

(9)

If we assume the error e has zero mean and is stationary, and
that the error of distinct points are uncorrelated with each
other, then we can differentiate Eq. (9) to find the Kalman
gain K that minimizes the variance of Pa. At an extremum,

dtr(Pa)
dK

5 2(K 2 PxyP
21
yy )TPyy 5 0, (10)

K 5 PxyP
21
yy , (11)

and

Pa 5 Pb 2 PxyP
21
yy P

T
xy: (12)

Substituting Eqs. (7) and (8) into Eqs. (11) and (12), we obtain

K 5 PbHT(HPbHT 1 R)21, (13)

and, in terms of the Kalman gain,

Pa 5 [I 2 KH]Pb: (14)

The Kalman gain [Eq. (13)] is scaled by the size of the noise
process covariance (R) relative to the Pb projected into obser-
vation space (HPbHT). The term KH acts as a correction term
to reduce Pa by an amount determined by the uncertainty and
distribution of the observations.

Many of the following results quantify and minimize the di-
agonal elements of the analysis error covariance Pa. Another
metric, termed the formal mapping error (Emap), is the ratio
of the diagonal elements of the analysis error covariance Pa to
the background error covariance Pb and is a vector. The ith
element of the formal mapping error Emap is expressed as

Emap
i 5

Pa
ii

Pb
ii

: (15)

Formal mapping error (Emap) can be used to highlight regions
where observations improve the estimate and reduce Pa.

b. Variance scaling

BGC properties have significantly different spatial and tem-
poral variability (Fig. 3). The magnitude of the variability of
these BGC signals also differs (by as much as 10 orders of
magnitude, see appendix B). Without scaling, variables with
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relatively large variance will dominate over variables with rel-
atively smaller variance (see appendixes A and B). To pro-
vide equal treatment of the different properties and a
reasonable representation of ocean variance, we scale the var-
iance of individual BGC variables such that the scaled varian-
ces of all BGC variables are similar. The data scaling is a filter
that imposes minimum and maximum temporal variance of
each variable at each grid point.

For each variable y and depth k, we define var15thky to be the
15th percentile of a dataset formed by the unscaled temporal
variance of the time series x(t)ijky at each grid point of longi-
tude i and latitude j. Then we impose a scaling, which we call
sijky, on the data such that

varscaled[x(t)ijky ] 5
var[x(t)ijky ]

sijky

, (16)

where

sijky 5

var[x(t)ijky ], if var[x(t)ijky ] # var15thky ,

var15thky , if var15thky , var[x(t)ijky ] # 15 var15thky ,

var[x(t)ijky ]
15

, if 15 var15thky , var[x(t)ijky ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

and where s is the scaling term and is a function of var[x(t)ijky].
A brief description of why the 15th percentile cutoff (and
other tuning factors) were chosen can be found in appendix B.
One can think of this scaling as a dynamic range limiter
where small variances are amplified to the value of var15thky
and large variances saturate and are reduced to the value of
15 var15thky . This scaling has been tuned to reduce extremes in

CM4 output without changing the spatial distribution of
BGC variance.

The sum of the variance at the ith longitude, jth latitude
grid point over depth, and variable type can be written:

vartotali,j 5∑
k
∑
y
varscaled[x(t)ijky ]: (18)

c. Localization

We expect observations at nearby grid points to be more
correlated than distant observations. We hypothesize that
these similarities decrease with distance and converge to a
limit where grid points that are sufficiently far away are un-
correlated. However, for a variety of reasons (e.g., Cai et al.
2011), spuriously strong covariances may exist between grid
points that are far apart. For this reason, imposing a filter that
reduces correlations between distant points can be desirable.

Additionally, the size of the background error covariance
Pb is n 3 n, where n is the number of elements in the state
vector x. Necessary calculations on the Pb become quadrati-
cally expensive with larger n. If we expect grid points at large
distances to be uncorrelated, then much of the Pb is close to
or equal to zero; this means that much of Pb does not contrib-
ute to these calculations and can be ignored. Imposing a filter
to remove covariances at large distances makes Pb a sparse
matrix and substantially reduces the expense of calculations.

For these two reasons, we apply a localization filter to Pb.
The localization we use (Gaspari and Cohn 1999) is a specially
constructed piecewise polynomial that does not introduce
negative eigenvalues in the resulting localized matrix.

The Gaspari and Cohn localization filter contains a scaling
term, s, that is defined as

s(r, c) 5

2
1
4

|r|
c

( )5
1

1
2

|r|
c

( )4
1

5
8

|r|
c

( )3
2

5
3

|r|
c

( )2
1 1, if 0 # |r| # c,

1
12

|x|
c

( )5
2

1
2

|r|
c

( )4
1

5
8

|r|
c

( )3
1

5
3

|r|
c

( )2
2 5

|r|
c

( )
1 4 2

2
3

c
|r|
( )

, if c # |r| # 2c,

0, if 2c # r,

,
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where |r| is the magnitude of the distance between grid points,
and c is the characteristic length scale of the localization. The
localization is applied elementwise such that the resulting co-
variance matrix is calculated as

Pb 5

p11s(0, c) p12s(r12, c) … p1Ks(r1K, c)
p21s(r21, c) p22s(0, c)

..

. . .
.

pK1s(rK1, c) pKKs(0, c)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

where pa,b is the covariance between the ath and bth elements
of the state vector x, and rab is the horizontal distance be-
tween the ath and bth element of the state vector.

Ideally, the characteristic length scale c will be pro-
portional to the length scale of the forcing that produces
the covariance. We observe that the gravest eigenvectors
of the covariance matrix (Figs. 4 and 5) correspond to
either large-scale seasonal oscillations or waves, and higher
eigenmodes of the covariance matrix (Fig. 4) appear to
demonstrate finer mesoscale variability. For this reason,
we impose a scale separation on the 4 gravest eigenmodes
of the covariance matrix. The localization applied to the
gravest eigenmodes had a c value of 10.958 latitude and
longitude, while localization applied to all higher modes
had a c value of 3.658 latitude and longitude. The localized
covariances are represented as the blue square labeled Pb

in Fig. 7.
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d. Variance constrained by static Argo arrays

Now that we have scaled and localized Pb, we focus on de-
scribing the calculation of the first of our three results: vari-
ance constrained by static distributions of Argo floats. We
produce two results from the static arrays: variance con-
strained from an actual array of Argo floats at an example
time, May 2021, which we term the “existing float array
snapshot,” and variance constrained from randomly deployed
floats, which we term the “Monte Carlo snapshot” (Fig. 1).
Equations (13) and (14) are used to calculate Pa. This section
describes the construction of the observation operator H

(Argo array) and the noise process covariance R (estimate of
observational error), which are the two required matrices to
calculate Pa.

We will describe the construction of these matrices for the
general float array and then explain the specifics of the exist-
ing float array snapshot and Monte Carlo snapshot. The ob-
servation operator accounts for every float’s observational
suite. Because x includes multiple BGC variables at a grid
cell, an individual Argo float profile must be considered as
multiple distinct observations. The float array is binned to
match the dimensions of the state vector x. Multiple floats can
occupy the same grid cell: for example, a core Argo and BGC
Argo float could be separated by approximately two hundred
kilometers for 28 3 28 grid spacing and farther for coarser res-
olutions. Let the list O of length m be the unique state vector
index corresponding to the distribution of sensors on floats in
the array. To account for the additional variance constrained
by redundant sensors in a grid cell, we also record the number
of measurements per element of x and call this list N. List N is
also of length m. From the fundamental observation equation
[Eq. (1)], we see that the observation operator H is an m 3 n
matrix, where n is the length of the state vector. The observa-
tion operator projects the state vector into the observation
space in the observation equation. The observation operator
is a sparse matrix composed of ones at the column indices de-
fined in list O and zeros elsewhere. This can be written as the
following:

H[1, O1] 5 1

H[2, O2] 5 1

..

.

H[m, Om] 5 1: (21)

To calculate R in Eq. (13) we assume that the representa-
tion error of e [Eq. (1)] dominates the instrumentation error
and is proportional to the uncertainty variance of the state
vector for the observation location and variable type. We also
assume that additional observations at a grid point reduce the
representation error. R is a diagonal m 3 m matrix with diag-
onal elements equal to 4 times the variance of the state vector
element corresponding to the observation scaled by the num-
ber of observations. This approximation is a conservative
choice because one observation every 10 days can only con-
strain a limited percentage of the total variance. In matrix
form, this is written as

R 5 4

P(O1, O1)/N1 0 … 0

0 P(O2, O2)/N2

..

. . .
.

0 P(Om, Om)/Nm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
:

(22)

Given the array distribution of the existing Argo floats (Fig. 1),
it is straightforward to calculate the H and R matrices that corre-
spond to the existing float array snapshot. The analysis error co-
variance, Pa [Eq. (14)], and formal mapping error Emap [Eq. (15)],
were then calculated for all depth levels. Schematically, this is rep-
resented in Fig. 7 as the combination of the observation operator
H (existing float array) and background error covariance Pb

(modeled cross covariances) to produce the present P a.
Uniform float distribution has been a stated design goal of the

core Argo array and is a design goal of the BGC Argo array
(Johnson and Claustre 2016). We examine whether nonuniform
distribution might be more efficient, that is, reduce the numbers
of floats required, by first estimating the amount of variance the
uniformly distributed BGC Argo array will constrain by creating
Monte Carlo snapshots of many randomly distributed arrays of
varying float densities and averaging the results together. Ran-
dom arrays were constructed of hypothetical floats equipped
with the full CM4 BGC sensor suite, and array sizes were calcu-
lated from 0 to 1000 floats in 50 float increments. We calculated
Monte Carlo variance snapshots for 50 random arrays at each
array size and averaged the results. Schematically, this is repre-
sented in Fig. 7 as the combination of the random float array
and cross covariances to produce the designed Pa.

e. The transition matrix and variance constrained by
future Argo arrays

Now that we have a quantifiable metric for assessing float
performance for constraining the temporal variability of a
state vector, we consider the task of predicting future float
distributions so that we can estimate how well the Argo array
will observe the ocean at a future time. For these calculations,
we assume that the statistics of the background error covari-
ance Pb are stationary. A 28 3 28 spatially binned transition
matrix with a 90-day time step, constructed from all existing
Argo trajectories (Chamberlain et al. 2023) (Fig. 6), is used to
estimate the evolving array distribution at later time steps.
The transition matrix acts on the Argo state vector (r), which is
defined as the probability of finding an Argo float in each grid
cell, and propagates it into the future l time steps such that

r(t 1 l) 5 Mlr(t), (23)

where M is the transition matrix. The vector r is n 3 1, where
the superscript tm indicates transition matrix. The transition
matrix is a square n 3 n matrix that statistically predicts the
future probability density of the Argo state vector as it
evolves through time. Transition matrix coverage is restricted
to regions with a large amount of Argo trajectory data; there-
fore, while the transition matrix is on the same grid as CM4,
the transition matrix grid is a subset of the CM4 grid.
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The first statistical moment of the transition matrix can be
expressed as

ra 5 ∑
ntm

b51
Ml

abrb, (24)

where rb is the relative displacement vector from grid cell a to
grid cell b, and Ml

ab is the probability of transition from grid

cell a to grid cell b. This first moment of the transition matrix
probability distribution can be interpreted as the expected
value of the transition. Using this equation, we can estimate
the future location of an Argo float to any time step in the fu-
ture. An example of the deployed Argo fleet from the May
2021 snapshot projected from 90 days to 4 years in the future
is seen as the colored curves in Fig. 6.

The approximate lifespan of full float functionality is ap-
proximately 5 years. In our estimates of the future float distri-
butions, we account for float age by removing floats from the
distribution that are over 5 years old. For these examples, we
do not include the ongoing replacements that maintain the
global array at about 4000 floats.

Figure 7 represents the future float PDF as the existing float
array operated on by the transition matrix; the future float
PDF is combined with the background error covariance Pb of
CM4 to produce an estimate for future analysis error covari-
ance Pb.

f. Optimal array design

An optimal array utilizes the observations of every float to
the greatest effect. The criteria defined as optimal in this ap-
proach are to minimize the expected error variance for the es-
timated anomaly of multiple BGC properties from the surface
to 2000 m depth. Our strategy to determine optimum deploy-
ment locations is iterative: placing floats in an ideal location
one at a time. This means that every time a new float is added
to the system, we must find the next best location to deploy a
float or, stated another way, the deployment location that
constrains the most variance in the analysis error covariance
Pa. Naively, one might assume that deploying in the localized
Pa grid cell of most variance is the best choice. However, this
does not consider the spatial covariance or cross covariances
of observations. An observation at one grid cell can constrain
variance of the same or different variables many grid cells

FIG. 6. The 2-yr prediction of array density of global core Argo
array. Argo array distribution is based on the May 2021 snapshot
(Argo 2021) using the transition matrix (Chamberlain et al. 2023)
[Eq. (23)]. Colored lines represent time of mean transition [l in
Eq. (24)]. Gridcell shading represents estimated array density.
Gray shading represents areas outside domain of the transition ma-
trix; beige shading represents land.

FIG. 7. (a) Flowchart of optimal deployment location calculation and (b) organization of analysis error covariance
Pa products.
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away. The structure of Pa can be complicated and difficult to
understand. The gravest eigenvector of Pa will always contain
the most variability in the eigenspectrum, and we assume the
next best location is the maximum absolute value of this grav-
est eigenvector.

The iterative strategy is illustrated in Fig. 7a. Starting with
an observation operator H [Eq. (14)], which is formed from a
distribution of floats (H can be the null matrix if there are no
floats), we calculate Pa (Pa will be Pb if this is the first float in
the array). Next, we calculate the gravest eigenvector of Pa

and find the location of the maximum sum of absolute value
of the eigenvector weights [similar to Eq. (18)]. Finally, we
add a float in the optimal array at this location and recalculate
Pa. Floats are iteratively added until the maximum number of
floats in the simulation has been reached.

In previous results, we calculated Pa and Emap on a single
depth level. However, a single depth state vector would not
be appropriate for this optimization because the ocean experi-
ences different forcing and has different variability at differ-
ent depths. An optimized observing strategy needs to be
representative of the diverse range of physical and biogeo-
chemical processes that occur at different depths in the ocean;

but, as noted previously, increasing the size of the state vec-
tor is computationally expensive, and so a balance must be
struck between the two. The state vector x used in these
calculations includes BGC variables from CM4 at depths 15,
87.5, 550, and 950 m subsampled to a 48 3 48 grid of latitude
and longitude. This method weights all variables, at all depths,
equally. Equal weighting might not be the correct choice for
all applications, as some variables (such as those related to the
carbon cycle) may have more scientific or societal relevance.
Adjusting weights to the relative importance of these obser-
vations can easily be done by adjusting s in Eq. (17); how-
ever, it is outside the scope of this work to recommend alternate
weightings.

4. Results

a. Estimates of variance constrained by the current Argo
float array

The ability of the combined core and BGC Argo float ar-
rays from the May 2021 snapshot (Argo 2021) to observe the
BGC anomaly from the mean is quantified. Argo locations
are used to create an observation operator [H in Eq. (21)].

FIG. 8. Scaled pH formal mapping error (Emap) of existing core and BGC Argo float array
taken from May 2021 snapshot at (a) the surface and (b) 1000 m. Colored shading represents
amount of unconstrained variance. Beige shading represents land. Gray areas are too shallow.
Green dots represent core Argo floats. Blue dots represent BGC Argo floats without pH sensors.
Cyan dots represent BGC floats equipped with pH sensors.
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This H is then used to calculate the Pa [Eq. (14)]. Figure 8 is
an example of the formal mapping error Emap [Eq. (15)] of
pH for the current Argo array. Emap depends on the correla-
tion scales for the variables considered. Generally, Emap is
larger at depth because spatial correlation scales are shorter
(although temporal correlation scales may be longer) (Fig. 9).
The largest Emap occurs in the Arctic, where there are very
few floats. The high-latitude Southern Ocean is the region
with the next largest mapping error, followed by the tropics.
The value of Emap is smallest in the northern and southern
midlatitude surface waters. These regions tend to have very
long spatial correlation scales. Figure 10 shows the zonal

average of unconstrained variance for all variables based on
the current Argo array.

Rather than minimizing formal mapping error Emap [Eq. (15)
and Fig. 9], we could choose to minimize analysis error covari-
ance Pa (Fig. 10). Emap represents how well a region is observed,
but even well-observed regions with high variance can have rela-
tively high Pa; an example of this is seen in surface temperature
in the northern midlatitudes (Fig. 10a). The Arctic shows high
Pa in surface salinity and chlorophyll. As the Arctic is almost en-
tirely unobserved by Argo, this means that Arctic variability of
analysis error covariance Pa and background error covariance
Pb are similar. Maximum pH and oxygen Pa are observed in the

FIG. 9. Zonal average formal mapping error (Emap) of existing Argo core and BGC float array at all depths of
(a) temperature, (b) salinity, (c) pH, (d) chlorophyll, and (e) oxygen. (Zones are defined as follows: Southern Ocean:
south of 608S; southern midlatitudes: 608–208S; tropics: 208S–208N; northern midlatitudes: 208–608Nl; Arctic:
north of 608N.)
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subsurface at northern midlatitudes. The Southern Ocean
and Southern Hemisphere midlatitudes have relatively low
Emap and Pa. This is due to the impact of the SOCCOM
project, which has deployed a substantial number of BGC
floats in these regions.

b. Estimates of variance constrained by Monte Carlo
distributions

Estimates for variance constrained by varying numbers of
randomly deployed BGCArgo arrays of varying uniform den-
sities have been calculated (Fig. 11). Random distributions
of floats were used to create observation operators [H in
Eq. (21)], which were used to calculate the analysis error

covariance Pa [Eq. (14)]. Fifty Monte Carlo snapshots were
calculated for each float density considered, and the results
were averaged.

As expected, Pa is inversely proportional to float density
for the 5 variables considered. Maximum Pa in temperature,
salinity, and chlorophyll occurs in the surface layers, where
pH and oxygen have high uncertainty at 100 m, and oxygen
has maximum uncertainty at depth (Fig. 11). High oxygen Pa

at depth is due to large unobserved variance in the Sea of
Japan. This area is known for bottom water formation (Talley
et al. 2003).

The decrease in formal mapping error (Emap) is not uni-
form across variables and depths. Salinity and oxygen have

FIG. 10. Zonal average analysis error covariance Pa of existing Argo core and BGC float array at all depths, of
(a) temperature, (b) salinity, (c) pH, (d) chlorophyll, and (e) oxygen. (Zones are defined as follows: Southern
Ocean: south of 608S; southern midlatitudes: 608–208S; tropics: 208S–208N; northern midlatitudes: 208–608N;
Arctic: north of 608N.)
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the slowest decrease in Emap with increasing number of floats
(hardest signals to constrain), and pH and chlorophyll have
the steepest decrease in Emap with increasing number of floats
(easiest to constrain). The covariance of pH with temperature
and oxygen has substantial covariance, and the Emap of pH
decreases an average of 12% faster than the mapping error of
salinity with increasing number of floats. This work suggests
that additional core Argo floats may need to be augmented
with oxygen sensors in order to achieve a mapping error
equivalent to that of pH.

When binned by depth, upper-ocean formal mapping
error (Emap), averaged across variables and by depth, had
a steeper decline than the deep ocean with increasing floats;
overall upper-ocean Emap decreased an average of 6% faster.
The upper ocean is defined as everything shallower than

137.5 m and the deep ocean is defined as everything deeper
than 137.5 m.

c. Estimates of variance constrained by future Argo floats

The ability of time-evolving Argo float arrays to observe
BGC variance is quantified here for the first time. These maps
can identify future holes in the BGC Argo array or be used to
justify the continued investment in these observations. The
future analysis error covariance Pa was calculated by propa-
gating the current float distribution into the future with the
Argo trajectory-based transition matrix [Eq. (23)]. The first
moment of the transition matrix [Eq. (24)] was used to deter-
mine future float locations and construct a future observation
operator [H in Eq. (21)]. The future observation operator was
then used to estimate Pa [Eq. (14)].

FIG. 11. (a)–(j) Global average of formal mapping error (Emap) of (left) randomly distributed Argo floats for in-
creasing float density and (right) analysis error covariance Pa for 1000 BGC floats at all depths of (a),(b) temperature,
(c),(d) salinity, (d),(e) pH, (e),(f) chlorophyll, and (f),(j) oxygen. (l) Colored lines represent depth averaged Emap by
variable for increasing Argo float density. (m) Colored lines represent variable averaged Emap for upper and lower
ocean depths. Upper ocean is defined as shallower than 137.5 m, and deep is defined as deeper than 137.5 m. Shading
represents standard deviation across all variables.
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Similar to section 4b, the unconstrained BGC variance is in-
versely proportional to the array size. As the array is pro-
jected into the future, without replenishment, such that an
increasing number of floats are removed due to age, the vari-
ance increases. Also, the distribution of highest variance is
similar to the results shown in section 4b: namely, high uncon-
strained surface variability in temperature, salinity, and chlo-
rophyll, and high unconstrained 100 m variability in pH and
oxygen (Figs. 12 and 13).

To highlight the utility of this method, we deployed 2 hypo-
thetical BGC Argo floats at the start (float 1) and end (float 2)
of the GO-SHIP P1 transect that sailed in fall 2021 (Fig. 14).
Our method calculated the relative performance of these
two hypothetical floats within the context of the natural BGC
variability of the ocean (as realized by CM4) and within the
context of the surrounding float array from the May 2021
Argo snapshot. The transition matrix evolved the position
(and accompanying algorithm-estimated death) of these and
surrounding floats forward through time. The value of Pa was
calculated for each float deployment, and their difference in
analysis error covariance Pa quantified their relative performance

at each time step. This calculation was done for all BGC
variables in this study, from CM4. Float 1 convincingly out-
performs float 2 in pH variance constrained in the entire
water column and temperature variance constrained at
depth throughout the experiment. In contrast, float 2 con-
strains more salinity and oxygen variance throughout the
experiment. Changes in which float constrains more vari-
ance also occur through time, particularly in chlorophyll at
200 m and salinity at the surface and 600 m. Argo managers
are ultimately responsible for maximizing the relative value
of observations collected by floats, and this is a first step at
quantifying the relative importance of potential deployment
sites with respect to the assumption here of observing the
anomaly from the mean.

d. Optimal array design

An optimal array based on BGC floats has been con-
structed to best constrain global BGC variability (Fig. 15).
The method to calculate the optimal array takes an iterative
approach by sequentially finding the next best float deploy-
ment. The best deployment location is approximated as the

FIG. 12. Scaled surface pH formal mapping error (Emap) of the Argo float array of May 2021,
projected at (a) 1 and (b) 2 years into the future assuming floats are not replenished. Colored
shading represents amount of Emap. Beige shading represents land. Gray areas are too shallow
to be calculated in simulations. Green dots represent locations of existing core Argo floats. Blue
dots represent locations of existing BGC Argo floats. Cyan dots represent floats equipped with
pH sensors.
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maximum absolute value of the sum of variances [Eq. (18)] of
the gravest eigenvector of the analysis error covariance Pa

[Eq. (14)]. The new deployment location is then added to the
observation operator H [Eq. (21)], and a new Pa is calculated.
This iterative method is run until the entire array is con-
structed (Fig. 7).

The optimal float array was calculated for 1000 floats, which
is the specification for the BGC Argo array (Johnson and
Claustre 2016), and achieved global coverage (Fig. 15a).
The meridionally binned optimal array (Fig. 15c) does not
have a prominent structure; however, the zonally binned
optimal array (Fig. 15b) has five distinct peaks in the distri-
bution: two large peaks in the subtropical gyres around
458N and S, two smaller peaks in the Arctic and in the equa-
torial region, and a narrow peak in the high-latitude South-
ern Ocean. The algorithm does not favor deployments in
the boundaries that exist between the subtropical gyres, the
equatorial region, the Arctic, or in the Antarctic Circumpo-
lar Current. We hypothesize this is due to strong dynamical
variability in these regions leading to shorter correlation
length scales and smaller cross covariances. The algorithm
also does not favor BGC Argo deployments in the western

tropical Pacific. This is apparently because there is lower
BGC variance in CM4 in this region (see appendix A) and
is considered in section 5b.

The efficacy of the optimal array was tested in two ways.
First, to test the distribution of variability in CM4, random
and optimal arrays were used to constrain uncertainty co-
variance matrices degraded with Gaussian noise. Second,
the optimal array was compared to random arrays of vary-
ing number of floats (Fig. 16). In the first test, we added
Gaussian noise with a scaling equal to that of the localiza-
tion to the background error covariance Pb and calculated
the amount of unconstrained variance (diagonal of Pa) for
both 1000 float random arrays and the 1000 float optimal ar-
ray. The amount of noise added was scaled to be propor-
tional to the variance at each grid point with signal-to-noise
ratios (SNR) ranging from 103 to 1022. To develop ade-
quate sensitivity statistics, these calculations were repeated
with unique Gaussian noise and random float arrays 50 times
at every SNR. Figure 16 shows that the optimal array out-
performed the random arrays at all levels of SNR, although
the relative outperformance decreased by half in the noisier
cases.

FIG. 13. Global average of the covariance of (left) the analysis error covariance Pa of the existing core and BGC
Argo float array and (right) formal mapping error (Emap) of the predicted Argo array at all depths: (a),(b) tempera-
ture, (c),(d) salinity, (e),(f) pH, (g),(h) chlorophyll, and (i),(j) oxygen.
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The second test was designed to test the efficacy of the opti-
mal array. The unconstrained variance (diagonal of Pa) was
calculated for both the optimal and random arrays with an
increasing number of floats. Again, these calculations were
repeated with 50 unique random float distributions for each
random float density. The 1000-float optimal array constrained
an equivalent amount of variance as the mean 1100-float
random array (Fig. 16). Of course, this idealized experi-
ment does not take into account the reality that floats are
mostly deployed from research ships of opportunity rather
than along the most optimal tracks. This experiment does,

however, offer insight into regional prioritization of BGC
deployments.

5. Discussion

a. Expected error variance structure

We have demonstrated a method to estimate the impact of
present and future BGC Argo arrays on constraining variance
in the float-observed BGC fields. The results show consistent
structures in the analysis error covariance Pa seen in the cur-
rent, future (projected), and uniformly distributed arrays. The

FIG. 14. (a) Formal mapping error (Emap) and track lines of two hypothetical floats deployed along the P1
GO-SHIP line 48 months after deployment with surrounding Argo infrastructure as represented by the May 2021
snapshot. All Argo floats (hypothetical and real) are propagated to future positions with the transition matrix. Green
dots represent core Argo floats, and blue dots represent BGC Argo floats. Teal and purple circles represent deploy-
ment locations, teal and purple lines are track lines, and teal and purple stars represent final locations of float 1 and
float 2, respectively. Gray shading indicates the region outside of the model domain. Beige shading indicates land,
and colored shading indicates mapping error. (b)–(f) Difference of float 1 and float 2 expected error variance for
(b) temperature, (c) salinity, (d) pH, (e) chlorophyll, and (f) oxygen. Green shading indicates float 1 constrains more
variance and purple shading indicates float 2 constrains more variance.
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consistent structure of Pa among these 3 distributions is not
surprising because the design criteria for the current Argo
fleet is a uniform distribution, so these reflect the same sam-
pling strategy. We observe that the general structure of the
Pa matches the structure of the background error covari-
ance Pb: higher temperature variability in the Northern
Hemisphere midlatitudes, higher salinity and chlorophyll
variability in the Arctic, and higher pH and oxygen variabil-
ity in the Northern Hemisphere midlatitudes at a depth of
100 m (see appendix C).

The Pa estimate presented only considered Argo floats.
Additional observing platforms such as buoys, gliders, and
satellites, constrain additional variance that has not been ac-
counted for here. The largest moored buoy arrays (TAO,
RAMA, and PIRATA) are located in the tropics and record
high-frequency full-depth observations of temperature, salin-
ity, and limited BGC variables. These observations constrain
ocean variance in these regions, and the unconstrained vari-
ance in the tropics is undoubtedly lower than shown in these
results. Additionally, satellite observations measure important
ocean variables such as temperature, salinity, sea surface
height, and chlorophyll; consequently, the unconstrained vari-
ance in the surface ocean of BGC variables is lower than pre-
sented here.

The BGC variance estimates presented are operationally
idealized and ignore ice or the difficulty of deploying floats in
remote regions. Some of this ocean variability may be unob-
servable in the real world with Argo floats. While the seasonal
extent of the Southern Ocean sea ice cover offers many op-
portunities for floats to surface during the austral summer, a
substantial area in the Arctic is continuously covered. Also,
conventional Argo float ballasting is unsuitable for the Arctic,
and new float designs with reserve buoyancy will be neces-
sary. This challenge is being overcome by recently funded
proposals to deploy acoustically tracked under-ice floats in
the Arctic, but Arctic observations will always be compara-
tively difficult. The optimal maps described here are agnos-
tic to the platform used to collect the observations, and,
given the grave importance of Arctic monitoring, a com-
bined observing strategy of gliders, floats, and ships may be
necessary.

In this analysis, we have only considered the spatial correla-
tion of observations. However, for applications such as data
assimilating models, quantifying the spatiotemporal impact of
observations may be a better metric of observing design. At
the surface, high temporal variability of surface fluxes is not
captured in 10-day sampling, and a larger observational un-
certainty may be needed to realistically map these fields. At

FIG. 15. (a) Map of the optimal distribution of 1000 BGC Argo floats with a grid spacing of approximately 68 in lati-
tude and longitude. Dots represent ideal BGC Argo float locations for observing the BGC anomalies from the mean.
State vector used for calculation is based on four depth levels (15, 87.5, 550, and 950 m) of CM4 BGC output at a grid
spacing of 48 in latitude and longitude. Beige shading indicates land. (b) Histogram of zonally binned optimal array.
(c) Histogram of meridionally binned optimal array. The histograms in (b) and (c) are binned in increments of 68 latitude
and longitude, respectively. Colored shading indicates when in the sequential calculation floats were deployed (i.e.,
purple indicates locations identified first, and yellow indicates locations identified last). Float locations identified
earlier are relatively more important in this optimal configuration by construction.
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depth, forcing happens on much slower time scales (weeks to
months), and information about the state of the deep ocean
may persist in the system longer than individual profiles. This
means that the observations of multiple profiles could be com-
bined into the same mapped product, similar to the widely
used climatologies of Roemmich and Gilson (2009) or data as-
similating models (Mazloff et al. 2010). The temporal autoco-
variance of the state could be quantified in Pa, but this would
be substantially more computationally expensive.

b. Optimal array recommendations

The method (section 3f) for determining the optimal array
calculates the next best float deployment location for observ-
ing the anomaly from the mean. This method assumes the
mean of BGC fields is already known. The algorithm priori-
tizes deployment of the first floats in the northern midlati-
tudes centered at 408N and in the southern midlatitudes
centered at 458S. From this analysis, a large initial investment

in Southern Ocean BGC deployments through the SOCCOM
project was a wise first choice. Building on SOCCOM, the
next latitude band this method recommends is centered at
458N, then the Arctic (if possible), followed by the equatorial
region. These results also define which areas should be priori-
tized for replenishment. With a finite number of BGC floats
each year and ships of opportunity to deploy from, the north
and south midlatitudes are prioritized over the tropics.

The southern midlatitudes are noted as a region of spuri-
ously high ventilation and consequently biased biogeochemis-
try in the CM4 model (Dunne et al. 2020), which likely results
in unrealistic biogeochemical covariances. Because of this,
one might expect to see an anomalously high density of floats
in southern midlatitudes, but the distribution of floats in the
northern and southern midlatitudes is relatively even. The rel-
ative unimportance of the tropics to BGC variability as calcu-
lated from this method (section 3f) is not uniform and is
concentrated in the western Pacific. In the depths considered,

FIG. 16. (a) Relative unconstrained variance}sum of diagonal of the analysis error covariance
Pa}of randomly distributed 1000 float arrays and the optimal 1000 float array with Gaussian
noise added to the background error covariance Pb at varying signal-to-noise ratios (SNRs). Cal-
culations were repeated 50 times at each SNR. Green line represents mean of ensemble of calcu-
lations, and green shading represents standard deviation of ensemble of calculations. (b) Total
unconstrained variance}sum of diagonal of Pb}of randomly distributed (red line) and optimal
(blue line) float arrays of increasing distributions. Blue line represents variance constrained by
the optimal array, and red line represents mean of variance constrained by random array. Black
dash indicates the difference in array density of the random float array necessary to achieve an
equivalent constrained variance of the optimal float array at 1000 floats.
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this region has the lowest combined scaled variance [Eq. (18)]
(see appendix A). The World Ocean Atlas climatology also
shows the western Pacific as a region of distinctly low spatial
variability for the depths and variables considered (Locarnini
et al. 2018; Zweng et al. 2019; Garcia et al. 2019b,a), which
lends support to this result. However, the low temporal vari-
ability in the western Pacific may result from the spatially re-
strictive localization used to construct the background error
covariance Pb; the western tropical Pacific is a region that
participates in powerful, large-scale teleconnections via the
shape and extent of western boundary currents, the phase of
Madden–Julian oscillations, and the ENSO cycle. The west-
ern equatorial Pacific results here highlight how array optimi-
zation methodologies can lead to different array distribution
recommendations and are, in some respects, in contrast with
Roemmich et al. (2019), who call for a doubling of Argo floats
(which includes BGC floats) in the equatorial region. We rec-
ommend that BGC Argo managers carefully review the BGC
signals they wish to observe before making a significant in-
vestment of BGC Argo floats in the western tropical Pacific.

The method employed to draw these conclusions about the
optimal BGC float array has limitations: it inherits the biases
and uncertainties of the CM4 model on which the prior cova-
riances are based, as well as the narrower set of BGC varia-
bles in CM4 compared with BGC Argo; additionally, we only
consider four depth levels and use an approximate method to
site floats. With more computing power, it would be possible
to calculate full-depth eigenvectors and covariances. These es-
timates only consider spatial covariances and could differ sig-
nificantly if space and time covariances were used. Finally,
sequential algorithms may not be the best way to identify the
full array. Alternate algorithms exist that solve for the ideal
distribution of floats simultaneously (Hastings 1970) and may
offer improvements to the amount of variance the optimal ar-
ray can constrain, but are computationally more expensive
and have not been investigated here.

6. Conclusions

The analysis error covariance Pa of the existing, future, and
uniformly distributed BGC Argo float array has been quan-
tified for the first time, and an optimal BGC Argo array is
suggested. We find that the structure of unconstrained vari-
ance for the uniformly distributed BGC Argo arrays as well
as the May 2021 snapshot both in static form and projected
into the future all match the underlying structure of the prior
variance: high surface temperature variance in the northern
midlatitudes, high surface chlorophyll and salinity variance in
the Arctic, and high pH and oxygen variance at 100 m in the
northern midlatitudes. We also observe the spatial covariance
length scales to be significantly longer at the surface than at
depth; this results in subsurface maxima of formal mapping
error (Emap) for all variables and may be a result of not using
the space-time covariance. The Monte Carlo experiment
found that pH and chlorophyll were relatively easy to con-
strain, and oxygen and salinity were relatively hard to con-
strain; salinity sensors are already deployed on all core and
BGC Argo floats, while reducing oxygen variance may require

additional deployment of oxygen sensors on core Argo
floats.

A transition matrix, calculated from all existing Argo tra-
jectories (Chamberlain et al. 2023), was combined with the
model CM4 covariances to produce estimates of variance con-
strained in the future. This prediction was done for the exist-
ing full Argo array and also demonstrated the relative
variance constrained by two hypothetical floats in the Pacific
in the context of surrounding Argo floats. These products and
code are now publicly available for use by the broader Argo
management community. In addition to an operational tool,
we suggest that these maps of current and future Argo array
performance are useful for communicating the importance of
sustained investment in Argo to both funding agencies and
the general public. By specifically quantifying the effective-
ness of each float, the impact of each one is less abstract. The
next logical step in this research is to translate the uncon-
strained variance into uncertainty in fluxes or bulk inventories
of BGC variables, which would further quantify the direct im-
pacts of BGC Argo observations.

The optimal array experiment identifies the Northern and
Southern Hemisphere midlatitudes as the best places to ini-
tially deploy BGC Argo floats and as areas that should be pri-
oritized for BGC Argo array maintenance. The western
tropical Pacific was identified as a region of low BGC variabil-
ity, requiring sparser BGC Argo coverage. Comparing the op-
timal array to random arrays, we found that the optimal array
outperformed the random array by 100 floats or 10% on aver-
age, corresponding to obtaining equivalent mapping perfor-
mance with a cost savings of more than $7.5 million over
5 years under current BGC Argo pricing.

As already noted, significant assumptions are made in
developing these methods. This work is a first step toward an
observations-driven approach to quantifying the effectiveness
of present and future BGC Argo arrays.
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APPENDIX A

Comparison of Spatial Distribution of Sum of Variances

The result that the western tropical Pacific has less BGC
variance is an important result and needs a more expansive
treatment than the figures presented in this paper provided.
A potential criticism of our methods could be that the scal-
ing s we have applied to the data [Eq. (17)] has skewed the
results. Here we expand the justification.

We begin by showing the time series of the Black Sea,
the western tropical Pacific, the eastern tropical Pacific, and
the western tropical Atlantic: these regions were selected to
show the relative context of global BGC variance (Fig. A1).
While salinity variance in the western tropical Pacific is rel-
atively high, temperature, pH, chlorophyll, and oxygen vari-
ance are orders of magnitude lower than the other locations
considered and the western tropical Pacific combined re-
sults are a minimum in BGC variability.

FIG. A1. (a),(e),(i),(m),(q) Raw CM4 time series in the Black Sea (location of very high variance), (b),(f),(j),(n),(m) raw CM4 time
series in the western tropical Pacific (location of very low variance of temperature, salinity, pH, chlorophyll, and oxygen, respectively),
(c),(g),(k),(o),(s) raw CM4 time series in the eastern tropical Pacific, and (d),(h),(l),(p),(t) raw CM4 time series in the western tropical
Atlantic. The mean has been removed from all time series.
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Scaling biogeochemical data is necessary in order to com-
pare the relative importance of observed variables. Section
6c illustrates that the unnormalized variance covers 10 or-
ders of magnitude from a minimum unnormalized variance
of oxygen to a maximum unnormalized variance of temper-
ature. Because of this, if a uniform scaling s were applied
to the data, Eq. (18) will be dominated by surface tempera-
ture variance.

Clearly, a nonuniform scaling is necessary, but which is
appropriate? To test the scaling used, we consider two al-
ternate cases for s: First, a scaling that is equal to the mini-
mum or maximum value of the variance of each variable at
each depth level and, second, a scaling equal to the median
of the variance at each depth level. After some testing (not
demonstrated here), we realized that a scaling based on the
extremes of the distribution produced suboptimal results,
and we defaulted to the median. The field resulting from
Eq. (18) with both the median s and Eq. (17) s are plotted
in Fig. A2. Comparing these two cases, we see that the larg-
est effect of the scaling is to reduce the relative variance in
the Black Sea (region of largest variability) and the Arctic
(region of second largest variability) (Fig. A2). The reduced
BGC variability in the western tropical Pacific is seen in
both plots. From this, we can see that Eq. (17) s reduces

the dynamic range of variability and in so doing highlights
a fundamental assumption about our analysis: all of the
ocean is biogeochemically important to observe, and no re-
gion should be singularly prioritized or ignored. This produ-
ces an optimal array that is more uniformly distributed and
not concentrated in the Black Sea and boundary currents.

The optimal array algorithm places a float in a location
that constrains maximum variance. This is done by finding
the maximum absolute value of the sum of the variances
[Eq. (18)] of the eigenvector. This is largely controlled by
the variance at a grid point and the spatial and intervariable
cross covariances. The cross covariances are not obvious
and can be significantly greater or smaller than expected. The
length scale of spatial covariance appears to be largely in-
formed by variability in the mesoscale eddy structure and front
locations. The intervariable cross covariance seems to be largely
informed by water mass properties or large-scale physical forc-
ing. The culmination of these two can manifest in unexpected
ways, which is why we adopt the eigenvector scheme.

This analysis shows the combined variance in the western
tropical Pacific is characteristically low. As this variance is a
significant piece of where the algorithm chooses to deploy
floats, it is not unreasonable to see an array with few floats
deployed in this region.

FIG. A2. Sum of total variance at four depth levels considered in optimal array where individual
variables are (a) scaled by the median of the temporal standard deviation distribution and
(b) scaled as described in Eq. (17).
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APPENDIX B

Impact of Scaling on the Data

The raw and scaled data are plotted in Fig. B1. The left
side of the figure shows the variance of the raw data from
the CM4 model. The right side of the figure shows the vari-
ance of the data after it has been scaled. The variance in
the unscaled data can cover four orders of magnitude or
more. The scaling imposes an artificial democratization
where the relative importance of the grid point with the
largest variance can, at most, be 15 times greater than the
smallest. The scaling was tuned to remove the extremes of
the variability distribution while preserving as much signal

as possible. All the low variance extremes are removed by
setting the minimum scaled variance of the system to the
15th percentile as described in the text. Setting the maxi-
mum scaled variance to be a multiple of the lower variance
restricts the dynamic range of the variability so that differ-
ent BGC variables at different depths can be meaningfully
compared to one another. Salinity at 550 m is the most im-
pacted by this upper limit with variability artificially capped
at the 32nd percentile. The average upper bound over
depths and variables exists at the 13th percentile of varian-
ces. This choice is not expected to be perfect, and can be
adjusted to improve the optimization. The point here is to
make the array design and evaluation reproducible.

FIG. B1. (a),(c),(e),(g),(i) Raw CM4 data temporal variance and (b),(d),(f),(h),(j) scaled CM4 temporal variance of
(top to bottom) temperature, salinity, pH, chlorophyll, and oxygen, respectively. Variance was calculated at each of
the four depth levels and sorted from smallest to largest in dataset.
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APPENDIX C

Total Variance before Observation

The total variance of the system is determined from the
diagonal elements of the background error covariance Pb,
prior to observation. The zonally averaged variance of each
variable can be seen in Fig. C1.
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Rodgers, and J. L. Sarmiento, 2014: An observing system simu-
lation for Southern Ocean carbon dioxide uptake. Philos.
Trans. Roy. Soc., A372, 20130046, https://doi.org/10.1098/rsta.
2013.0046.

Markov, A. A., 1906: Rasprostranenie Zakona Bol’shih chisel na
velichiny, zavisyaschie drug ot druga (in Russian). Izv. Fiz.-Mat.
Obschestva Kazan. Univ., 15, 135–156.

Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-
permitting Southern Ocean state estimate. J. Phys. Ocean-
ogr., 40, 880–899, https://doi.org/10.1175/2009JPO4236.1.

Monteiro, P. M. S., L. Gregor, M. Lévy, S. Maenner, C. L. Sabine,
and S. Swart, 2015: Intraseasonal variability linked to sampling
alias in air–sea CO2 fluxes in the Southern Ocean. Geophys.
Res. Lett., 42, 8507–8514, https://doi.org/10.1002/2015GL066009.

NASA, 2022: Ocean Biology Processing Group, AOB. OB.DAAC,
accessed 27 June 2022, https://oceancolor.gsfc.nasa.gov/.

Prend, C. J., S. T. Gille, L. D. Talley, B. G. Mitchell, I. Rosso,
and M. R. Mazloff, 2019: Physical drivers of phytoplankton
bloom initiation in the Southern Ocean’s Scotia Sea. J. Geo-
phys. Res. Oceans, 124, 5811–5826, https://doi.org/10.1029/
2019JC015162.

Reygondeau, G., A. Longhurst, E. Martinez, G. Beaugrand, D.
Antoine, and O. Maury, 2013: Dynamic biogeochemical prov-
inces in the global ocean. Global Biogeochem. Cycles, 27,
1046–1058, https://doi.org/10.1002/gbc.20089.

Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and
annual cycle of temperature, salinity, and steric height in the
global ocean from the Argo program. Prog. Oceanogr., 82,
81–100, https://doi.org/10.1016/j.pocean.2009.03.004.

}}, and Coauthors, 1999: On the design and implementation of
Argo: A global array of profiling floats. Argo Science Team
Doc., 35 pp., https://argo.ucsd.edu/wp-content/uploads/sites/
361/2020/05/argo-design.pdf.

}}, and Coauthors, 2019: On the future of Argo: A global, full-
depth, multi-disciplinary array. Front. Mar. Sci., 6, 439,
https://doi.org/10.3389/fmars.2019.00439.

Saxon, 2008: Saxon Algebra 2. Houghton Mifflin Harcourt, 1048 pp.
Schlunegger, S., and Coauthors, 2020: Time of emergence and

large ensemble intercomparison for ocean biogeochemical
trends. Global Biogeochem. Cycles, 34, e2019GB006453, https://
doi.org/10.1029/2019GB006453.

Sévellec, F., A. Colin de Verdiére, and M. Ollitrault, 2017: Evolution
of intermediate water masses based on Argo float displace-
ments. J. Phys. Oceanogr., 47, 1569–1586, https://doi.org/10.1175/
JPO-D-16-0182.1.

Talley, L. D., V. Lobanov, V. Ponomarev, A. Salyuk, P. Tishchenko,
I. Zhabin, and S. Riser, 2003: Deep convection and brine rejec-
tion in the Japan Sea. Geophys. Res. Lett., 30, 1159, https://doi.
org/10.1029/2002GL016451.

Zweng, M. M., and Coauthors, 2019: Salinity. Vol. 2, World Ocean
Atlas 2018, NOAA Atlas NESDIS 82, 50 pp., https://www.
ncei.noaa.gov/sites/default/files/2022-06/woa18_vol2.pdf.

C HAMBER LA I N E T A L . 1379NOVEMBER 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 09:15 PM UTC

https://doi.org/10.1029/2017JC012990
https://doi.org/10.1175/JTECH-D-22-0070.1
https://doi.org/10.1029/2019MS002008
https://doi.org/10.1029/2019MS002008
https://doi.org/10.5194/essd-6-273-2014
https://doi.org/10.5194/bg-18-509-2021
https://doi.org/10.5194/bg-7-1043-2010
https://doi.org/10.5194/bg-7-1043-2010
https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18_vol4.pdf
https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18_vol4.pdf
https://www.ncei.noaa.gov/sites/default/files/2022-06/woa18_vol3.pdf
https://www.ncei.noaa.gov/sites/default/files/2022-06/woa18_vol3.pdf
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1029/2019MS001829
https://doi.org/10.2151/jmsj1965.75.1B_181
https://doi.org/10.2151/jmsj1965.75.1B_181
https://doi.org/10.13155/46601
https://doi.org/10.6075/J0TX3C9X
https://doi.org/10.1029/2010JC006910
https://doi.org/10.1002/2017JC012819
https://doi.org/10.1002/2017JC012819
https://doi.org/10.1002/2015GB005359
https://doi.org/10.1002/2015GB005359
https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18_vol1.pdf
https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18_vol1.pdf
https://doi.org/10.1098/rsta.2013.0046
https://doi.org/10.1098/rsta.2013.0046
https://doi.org/10.1175/2009JPO4236.1
https://doi.org/10.1002/2015GL066009
https://oceancolor.gsfc.nasa.gov/
https://doi.org/10.1029/2019JC015162
https://doi.org/10.1029/2019JC015162
https://doi.org/10.1002/gbc.20089
https://doi.org/10.1016/j.pocean.2009.03.004
https://argo.ucsd.edu/wp-content/uploads/sites/361/2020/05/argo-design.pdf
https://argo.ucsd.edu/wp-content/uploads/sites/361/2020/05/argo-design.pdf
https://doi.org/10.3389/fmars.2019.00439
https://doi.org/10.1029/2019GB006453
https://doi.org/10.1029/2019GB006453
https://doi.org/10.1175/JPO-D-16-0182.1
https://doi.org/10.1175/JPO-D-16-0182.1
https://doi.org/10.1029/2002GL016451
https://doi.org/10.1029/2002GL016451
https://www.ncei.noaa.gov/sites/default/files/2022-06/woa18_vol2.pdf
https://www.ncei.noaa.gov/sites/default/files/2022-06/woa18_vol2.pdf

